Find dydx, if x and y are connected parametrically by the equations given in questions without eliminating the parameter.
x=a sec θ,y=b tan θ.
Given, x=a sec θ,y=b tan θ.
Differentiating w.r.t.. θ, we get
dxdθ=a sec θ tan θ and dydθ=b sec2θ∴ dydx=dydθdxdθ=dydθ×dθdx=b sec2θa sec θ tan θ=ba(sec θtan θ)=ba cosec θ