Find dydx, if x and y are connected parametrically by the equations given in questions without eliminating the parameter.
x=2at2, y=at4.
Given, x=2at2,y=at4
Differentiating w.r.t. t, we get
dxdt=(2a)(2t) and dydt=a(4t3) ∴ dydx=dydtdxdt=dydt×dtdx (∵ dydx=dy/dtdx/dt)=4at34at=t3t=t2