Find dydxin the following questions:
sin2x+cos2y=1
Given, sin2x+cos2y=1
Differentiating both sides w.r.t. x, we get
ddx(sin2x+cos2y=1)=ddx(1)
2 sin x cos x+2cos y(−sin ydydx) (Using product ruleddx(f(g(x)))=f′(x)ddxg(x))=0
⇒ −2sin y cos ydydx=−2sin x cos x⇒dydx=−sin 2x−sin 2y=sin 2xsin 2y
(∵ sin 2x=2sin x.cos x)