Find dydxin the following questions:
x2+x2y+xy2+y3=81.
Given, x2+x2y+xy2+y3=81.
Differentiating both sides w.r.t. x, we get
ddxx2+x2y+xy2+y3=81
3x2+ddx(x2y)+ddx(x2)+ddx(xy2)+3y2dydx=0
⇒ 3x2+x2dydx+y(2x)+x(2ydydx)+y2.1+3y2dydx=0 (Using product ruleddx(u.v)=uddxv+vddxu)
⇒ (x2+2xy+3y2)dydx=−3x2−2xy−y2⇒dydx=−(3x2+2xy+y2)x2+2xy+3y2