Find right hand limit at x=2
Given that,
f(x)={x+5,ifx≥2x2,ifx<2
Find right hand limit at x=2
R.H.L=limx→2+f(x)
=limx→2+f(2+h)
limh→0+(3(2+h)+5)=11 ...(1)
Find left hand limit at x=2
LHL=limx→2−f(x)
=limh→0+f(2−h)=limh→0+(2−h)2=4 ...(2)
Since LHL≠RHL at x=2
limit does not exist.
Thus, f(x) is discontinuous at x=2