Use the concept of continuity of a function at a point
f(x)=|x|+|x−1|⋯(1)
Find LHL, RHL and value of function (if required) at given point and compare them for checking continuity:
At x=1 L.H.L=limx→1−f(x)=limh→0+f(1−h)
limh→0+[|1−h|+|1−h−1|] =1+0=1....(2)
R.H.L=limx→1+f(x)=limh→0+f(1+h)
=limh→0+[|1+h|+|1+h−1|]
=1+0=1..(3)
Also,f(x)=|1|+|0|=1...(4)
From(2),(3),(4)
L.H.L=R.H.L=f(1)
Hence,f(x) is continuous at x=1