Use the concept of continuity of a function at a point Given that f(x)=⎧⎨⎩|x|cos1x, if x≠00, if x=0atx=0
Find LHL, RHL and value of function (if required) at given point and compare them for checking continuity:
At x=0
LHL=limx→0−f(x)=limh→0+f(0−h)
=limh→0+|0−h|cos1(0−h)
=limh→0+hcos1h
cos(−θ)=cosθ and|−h|=−(−h)=hash>o
=0....(2)
{range of cosine function is −1 to 1}
R.H.L=limx→0+f(x)=limh→0+f(0+h)
=limh→0+|0+h|cos10+h
=limh→0+hcos1h
=0....(3)
{range of cosine function is −1 to 1}
Also f(0)=0.....(4)
Using (2),(3),(4)
L.HL=R.H.L=f(0)
Hence,f(x) is continuous at x=0