∫x2+1x2−5x+6.dx
=∫x2−5x+6+5x−5x2−5x+6.dx
=∫(x2−5x+6x2−5x+6+5x−5x2−5x+6).dx
=∫(1+5x−5x2−5x+6).dx
=∫(1+5x−5(x−2)(x−3)).dx
=∫1.dx+1∫5x−5(x−2)(x−3).dx
=x +C1+∫5x−5(x−2)(x−3).dxI
Now, finding I
Using partial fraction, we get
5(x−1)(x−2)(x−3)=A(x−2)+B(x−3)
5(x−1)(x−2)(x−3)=A(x−3)+B(x−2)(x−2)(x−3)
⇒5(x−1)=A(x−3)+B(x−2)
⇒5x−5=(A+B)x−(3A+2B)
There are two ways to solve this:
Method 1:
Comparing the coefficients of 𝑥 and the constant term, we get
A+B=5
3A+2B=5
Sovling both, we get
A=−5,B=10
Method 2:
using
5(x−1)=A(x−3)+B(x−2)
Putting X=2
5(2−1)=A(2−3)+B(2−2
⇒A=−5
Putting x=3
5(3−1)=A(3−3)+B(3−2)
⇒B=10
(Usually, second method is easy and faster way to find the variables) Now putting the values of A and B in (2)
5(x−1)(x−2)(x−3)=−5(x−2)+10(x−3)
Now,
I=∫5(x−1)(x−2)(x−3).dx
=∫−5(x−2).dx+∫10(x−3).dx
⇒I=−5log|x−2|+10log|x−3|+C2
∫x2+1x2−5x+6.dx
=x+C1+I
=x+C1−5log|x−2|+10log|x−3|+C2
=x−5log|x−2|+10log|x−3|+C
Where C=C1+C2