wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find: x2+1x25x+6

Open in App
Solution

x2+1x25x+6.dx
=x25x+6+5x5x25x+6.dx
=(x25x+6x25x+6+5x5x25x+6).dx
=(1+5x5x25x+6).dx
=(1+5x5(x2)(x3)).dx
=1.dx+15x5(x2)(x3).dx
=x +C1+5x5(x2)(x3).dxI
Now, finding I
Using partial fraction, we get
5(x1)(x2)(x3)=A(x2)+B(x3)
5(x1)(x2)(x3)=A(x3)+B(x2)(x2)(x3)
5(x1)=A(x3)+B(x2)
5x5=(A+B)x(3A+2B)
There are two ways to solve this:
Method 1:
Comparing the coefficients of 𝑥 and the constant term, we get
A+B=5
3A+2B=5
Sovling both, we get
A=5,B=10
Method 2:
using
5(x1)=A(x3)+B(x2)
Putting X=2
5(21)=A(23)+B(22
A=5
Putting x=3
5(31)=A(33)+B(32)
B=10
(Usually, second method is easy and faster way to find the variables) Now putting the values of A and B in (2)
5(x1)(x2)(x3)=5(x2)+10(x3)
Now,
I=5(x1)(x2)(x3).dx
=5(x2).dx+10(x3).dx
I=5log|x2|+10log|x3|+C2
x2+1x25x+6.dx
=x+C1+I
=x+C15log|x2|+10log|x3|+C2
=x5log|x2|+10log|x3|+C
Where C=C1+C2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon