Let I=∫cosθ(4+sin2θ) (5−4 cos2θ)dθ
=∫cosθ dθ(4+sin2θ) (5−4(1−sin2θ))
=∫cosθ dθ(4+sin2θ)(1+4sin2θ)
Put sinθ=t⇒cosθ dθ=dt
I=∫dt(4+t2)(1+4t2)
For partial fraction,
1(4+t2)(1+4t2)=At+B4+t2+Ct+D1+4t2
1=(At+B)(1+4t2)+(Ct+D)(4+t2)
Expanding the equation
1=(B+4D)+(A+4C)t+(4B+D)t2+(4A+C)t3
Put t=0, we have B+4D=1 ...(i)
Equating the coefficient of t on both sides, we have
A+4C=0 ...(ii)
Equating the coeff of t2 and t3 respectively, we obtain
4B+D=0 ...(iii)
and 4A+C=0 ...(iv)
Solving (i),(ii),(iii) and (iv), we obtain
A=C=0 and B=−115 and D=4151(4+t2)(1+4t2)=−1154+t2+4151+4t2=−115×14+t2+415×141(14+t2)∴I=−115∫1(2)2+t2dt+115∫1(12)2+t2dt=−115×12tan−1t2+115×2tan−12t+C
=−130tan−1(sin θ2)+215tan−12(sin θ) + C