Given f(x)={x2−1,x≤1−x2−1,x>1
Limit of the given function at x=1 exists if limx→1−f(x)=limx→1+f(x)
∴L.H.L.=limx→1−f(x)=limx→1−x2−1=(1)2−1=0
∴R.H.L.=limx→1+f(x)=limx→1+(−x2−1)=−(1)2−1=−2
Thus, limx→1+f(x)≠limx→1−f(x)
Since, Left Hand Limit and Right-Hand Limit are not equal,
limx→1f(x) does not exist.