Given:
⇒4+3isin(θ)1−2isinθ .......(i)
As the function is purely real, the imaginary part of eqn.(i) would be 0
rationalizing eqn.(i) we get,
⇒4+3isin(θ)1−2isinθ×1+2isinθ1+2isinθ
⇒(4+3isin(θ))×(1+2isin(θ))12−(2isinθ)2
.......{since,(a+b)(a−b)=a2−b2 }
⇒4+8isinθ+3isinθ+6i2sin2θ1−4i2sin2θ
⇒4+11isinθ−6sin2θ1+4sin2θ
.......{since,i2=−1 }
⇒11+4sinθ×[(4−6sin2θ)+i(11sinθ)]
the imainary part is equal to zero for eqn. (i) to be purely real.
∴
⇒11sinθ1+4sin2θ=0
⇒sinθ=0
the general solution for sinθ=0 is θ∈nπwhere,n∈Z
Hence, for θ∈nπwhere,n∈Z
⇒4+3isin(θ)1−2isinθ is purely real.