Givenseriesis3,8,13,...253Here,firstterm,a=3commondifference,d=5Letusfindthetotalnumberoftermsatfirst.useTn=a+(n−1)d⇒253=3+(n−1)5⇒250=(n−1)5⇒n−1=2505⇒n−1=50∴n=51so,thereare51termsingivenseries.Nowweknowthatmthtermfromlast=lastterm−mthterm+1so,20thtermfromlast=51−20+1=32Hence,20thformlast=32thtermfromfirstuseTn=a+(32−1)d=3+31×5=3+155=158Hence,20thtermformlast=158.