Find the angle between the following pairs of lines :
r=2^i−5^j+^k+λ(3^i+2^j+6^k) and r=7^i−6^k+μ(^i+2^j+2^k)
r=3^i+^j−2^k+λ(^i−^j−2^k) and r=2^i−^j−56^k+μ(3^i−5^j−4^k)
Let θ be the acute angle between the given lines, then
cos θ=∣∣b1.b2|b1||b2|∣∣
The given lines are respectively parallel to the vectorsb1=3^i+2^j+6^k and b2=^i+2^j+2^k
∴ |b1|=√32+22+62=√9+4+36=√49=7|b2|=√12+22+22=√1+4+4=√9=3and b1,b2=(3^i+2^j+6^k).(^i+2^j+2^k)=3×1+2×2+6×2=3+4+12=19∴ cosθ=∣∣b1.b2|b1||b2|∣∣=197×3=1921⇒ θ=cos−1(1921)
Let θ be the acute angle between the given lines, then
cos θ=∣∣b1.b2|b1||b2|∣∣
The given lines are respectively parallel to the vectors
b1=^i−^j−2^k and b2=3^i−5^j−4^k
∴ |b1|=√(1)2+(−1)2+(−2)2=√1+1+4=√6|b2|=√(3)2+(−5)2+(−4)2=√9+25+16=√50=5√2and b1.b2=(^i−^j−2^k).(3^i−5^j−4^k)=1×3−1×(−5)−2×(−4)=3+5+8=16∴ cos θ=∣∣b1.b2|b1||b2|∣∣=16√6×5√2=1610√3=85√3⇒θ=cos−1(85√3)