Find the angle between the following pairs of lines: →r=3^i+^j−2^k+λ(^i+^j−2^k) and →r=2^i−^j−56^k+μ(3^i−5^j−4^k).
Open in App
Solution
The given lines are parallel to the vectors, →b1=(^i−^j−2^k) and →b2=(3^i−5^j−4^k) respectively.
Therefore, ∣∣→b1∣∣=√(1)2+(−1)2+(−2)2=√6 and ∣∣→b2∣∣=√(3)2+(−5)2+(−4)2=5√2 Thus →b1.→b2=(^i−^j−2^k).(3^i−5^j−4^k) =1.3−1(−5)−2(−4)
=3+5+8=16 If θ is the angle between the given lines then, cosθ=∣∣
∣∣→b1.→b2∣∣→b1∣∣∣∣→b2∣∣∣∣
∣∣ ⇒cosθ=16√6.5√2=16√2.√3.5√2=1610√3 ⇒cosθ=85√3 ⇒θ=cos−1(85√3)
This the required angle between the given pair of lines.