wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the angle between the given planes.
(i) r·2i^-3j^+4k^=1 and r·-i^+j^=4

(ii) r·2i^-j^+2k^=6 and r·3i^+6j^-2k^=9

(iii) r·2i^+3j^-6k^=5 and r·i^-2j^+2k^=9

Open in App
Solution

i We know that the angle between the planes r.n1 = d1, r. n2=d2 is given bycos θ=n1. n2n1 n2Here, n1=2 i^-3 j^+4 k^; n2=- i^+j^+0 k^So, cos θ=2 i^-3 j^+4 k^. - i^+j^+0 k^2 i^-3 j^+4 k^ - i^+j^+0 k^ = -2-34+9+16 1+1+0 = -529 2 = -558θ=cos-1-558

ii We know that the angle between the planes r.n1 = d1, r. n2=d2 is given bycos θ=n1. n2n1 n2Here, n1=2 i^- j^+2 k^; n2=3 i^+6 j^-2 k^So, cos θ=2 i^- j^+2 k^. 3 i^+6 j^-2 k^2 i^- j^+2 k^ 3 i^+6 j^-2 k^=6-6-44+1+4 9+36+4=-43 7=-421θ=cos-1-421

iii We know that the angle between the planes r.n1 = d1, r. n2=d2 is given bycos θ=n1. n2n1 n2Here, n1=2 i^ +3 j^-6 k^; n2= i^-2 j^+2 k^So, cos θ=2 i^ +3 j^-6 k^. i^-2 j^+2 k^2 i^ +3 j^-6 k^ i^-2 j^+2 k^=2-6-124+9+36 1+4+4=-167 3=-1621θ=cos-1-1621

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Perpendicular Bisector
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon