The given line is x−23=y+1−1=2−3−2
⇒→r=(2→i−→j+→k)+t(3→i−→j−2→k)
∴ the vector parallel to the given line is
→r=3→i−→j−2→k
The given plane is 3x+4y+z=−5
⇒→r=(3→i+4→j+→k)=5
∴ the normal to the given plane is
→n=3→i+4→j+→k
Let θ be the angle between the line and the plane, then
sinθ=→b.→n|→b||→n|
=(3→i−→j−2→k).(3→i+4→j+→k)|3→i−→j−2→k||3→i+4→j+→k|
=(3)(3)+(−1)(4)+(−2)(1)√32+(−1)2+(−2)2√32+42+12
=9−4−2√9+1+4√9+16+1=3√14√26=32√91
θ=sin−1(32√91)