Question

Find the angle between the vectors $$\left (2\hat{i}+\hat{j}+3\hat{k} \right )$$ and $$\left (3\hat{i}-2\hat{j}+\hat{k} \right )$$.

Solution

Let $$\vec{a}=2\hat{i}+\hat{j}+3\hat{k}, \vec{b}=3\hat{i}-2\hat{j}+\hat{k}$$We know that $$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|cos\:\theta$$, where $$\theta$$ is the angle between $$a$$ and $$b$$.$$\vec{a} \cdot \vec{b}=(2\hat{i}+\hat{j}+3\hat{k}) \cdot (3\hat{i}-2\hat{j}+\hat{k})$$        $$=6-2+3$$$$\vec{a} \cdot \vec{b}=7$$$$|\vec{a}|=\sqrt{2^2+1^2+3^2}=\sqrt{4+1+9}=\sqrt{14}$$$$|\vec{b}|=\sqrt{3^2+(-2)^2+1^2}=\sqrt{9+4+1}=\sqrt{14}$$Substitute the values in $$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|cos\:\theta$$ we get$$7=\sqrt{14}\cdot \sqrt{14} cos\:\theta$$$$\Rightarrow 7=14cos\:\theta$$$$\Rightarrow cos\: \theta=\dfrac{7}{14}$$$$\Rightarrow cos\: \theta=\dfrac{1}{2}$$$$\Rightarrow \theta = cos^{-1} \left(\dfrac{1}{2}\right)$$$$\Rightarrow \theta=\dfrac{\pi}{3}$$Mathematics

Suggest Corrections

0

Similar questions
View More

People also searched for
View More