1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Angle between Two Planes
Find the angl...
Question
Find the angles between the plane
→
r
.
(
^
i
−
2
^
j
−
2
^
k
)
=
1
and
→
r
.
(
3
^
i
−
6
^
j
+
2
^
k
)
=
0
.
Open in App
Solution
The angle between two planes is the angle between the normal to the two planes.
θ
=
cos
−
1
(
−
→
n
1
.
−
→
n
2
∣
∣
−
→
n
1
∣
∣
∣
∣
−
→
n
2
∣
∣
)
If
→
n
1
.
→
n
2
=
0
the planes are at right angles.
→
r
⋅
(
ˆ
i
−
2
ˆ
j
−
2
ˆ
k
)
=
1
→
r
⋅
(
3
ˆ
i
−
6
ˆ
j
+
2
ˆ
k
)
=
0
→
n
1
=
ˆ
i
−
2
ˆ
j
−
2
ˆ
k
,
→
n
2
=
3
ˆ
i
−
6
ˆ
j
+
2
ˆ
k
a
r
e
t
h
e
n
o
r
m
a
l
v
e
c
t
o
r
s
θ
=
cos
−
1
(
−
→
n
1
.
−
→
n
2
∣
∣
−
→
n
1
∣
∣
∣
∣
−
→
n
2
∣
∣
)
=
cos
−
1
(
(
1
)
(
3
)
+
(
−
2
)
(
−
6
)
+
(
−
2
)
(
2
)
√
1
+
4
+
4
√
9
+
36
+
4
)
=
cos
−
1
(
3
+
12
−
4
)
√
441
=
11
21
Suggest Corrections
0
Similar questions
Q.
Find the angle between the following pair of lines:
(i)
→
r
=
2
^
i
−
5
^
j
+
^
k
+
λ
(
3
^
i
−
2
^
j
+
6
^
k
)
and
→
r
=
7
^
i
−
6
^
k
+
μ
(
^
i
+
2
^
j
+
2
^
k
)
(ii)
→
r
=
3
^
i
+
^
j
−
2
^
k
+
λ
(
^
i
−
^
j
−
2
^
k
)
and
→
r
=
2
^
i
−
^
j
−
56
^
k
+
μ
(
^
3
i
−
5
^
j
−
4
^
k
)
Q.
The angle between the planes
r
.
(
2
^
i
−
^
j
+
2
^
k
)
=
3
and
r
.
(
3
^
i
−
6
^
j
+
2
^
k
)
=
4
Q.
Find the shortest distance between lines
→
r
=
6
^
i
+
2
^
j
+
2
^
k
+
λ
(
^
i
−
2
^
j
+
2
^
k
)
and
→
r
=
−
4
^
i
−
^
k
+
μ
(
3
^
i
−
2
^
j
−
2
^
k
)
Q.
Find the vector equation of the line passing through
(
1
,
2
,
3
)
and parallel to the planes
→
r
.
(
^
i
−
^
j
+
2
^
k
)
=
5
and
→
r
.
(
3
^
i
+
^
j
+
^
k
)
=
6
.
Q.
Find the shortest distance between lines
and
.