Find the area bounded by the ellipse x2a2+y2b2=1 and the ordinates x=0 and x=ae, where b2=a2(1−e2) and e<1
Open in App
Solution
Required area A is given by A=2 (Area of shaded region in first quadrant) ⇒A=2∫ae0|y|dx=2∫ae0ydx[∵y≥0∴|y|=y] ⇒A=2ba[∫ae0√a2−x2dx] ⇒A=2ba[12×√a2−x2+12a2sin−1xa]0ae ⇒A=2ba[ae2√a2−a2e2+12a2sin−1e] ⇒A=ba(a2e√1−e2+a2sin−1e)=ab(e√1−e2+sin−1e)