Find the area of a parallelogram ABCD in which AB = 14 cm, BC = 10 cm and AC = 16 cm. (Given, √3=1.73.)
In Δ ABC,
Using Heron's Formula,
S = (a + b + c)/2
⇒ S = (10 + 14 +16)/2
⇒ S = 40/2
⇒ S = 20
Area = √S(S−a)(S−b)(S−c)
∴ Area of the triangles = √20(20−10)(20−14)(20−16)
⇒ Area of Δ ABC = √20(10)(6)(4)
⇒ Area = √4800
⇒ Area = 10√48
⇒ Area = 10√(2 × 2 × 2 × 2 × 3)
⇒ Area = 10 × 2 × 2√3
⇒ Area of Δ ABC = 40√3 cm²
∴ Area of Δ ABC = 69.2 cm².
We know,
Area of the Δ ADC = Area of the ΔABC.
[∵ Both the triangles are congruent)
∴ Area of the Parallelogram = 2 × Area of Δ ABC.
⇒ Area of the Parallelogram = 2 × 69.2 cm²
∴ Area of the Parallelogram = 138.4 cm².
Hence, the Area of the Parallelogram is 138.4 cm².