Find the area of a rhombus having each side equal to 15cm and one of whose diagonals is 24cm.
Let ABCD be the rhombus where diagonals intersect at O.
Then, AB=15cm and AC=24cm.
The diagonals of a rhombus bisect each other at right angles.
Therefore, ΔAOB is a right-angled triangle, right angled at O such that
⇒OA=12AC=12cm and AB=15cm.
By Pythagoras theorem, we have,
(AB)2=(OA)2+(OB)2
(15)2=(12)2+(OB)2
(OB)2=(15)2−(12)2
(OB)2=225−144=81
(OB)2=(9)2
OB=9cm
∴BD=2×OB=2×9cm=18cm
Hence,
Area of the rhombus ABCD=12×AC×BD
=12×24×18=216cm2