1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Archimedes's Method
Find the area...
Question
Find the area of the parallelogram determined by the vectors:
(i)
2
i
^
and
3
j
^
(ii)
2
i
^
+
j
^
+
3
k
^
and
i
^
-
j
^
(iii)
3
i
^
+
j
^
-
2
k
^
and
i
^
-
3
j
^
+
4
k
^
(iv)
i
^
-
3
j
^
+
k
^
and
i
^
+
j
^
+
k
^
.
Open in App
Solution
i
Let
:
a
=
2
i
^
+
0
j
^
+
0
k
^
b
→
=
0
i
^
+
3
j
^
+
0
k
^
∴
a
→
×
b
→
=
i
^
j
^
k
^
2
0
0
0
3
0
=
0
-
0
i
^
-
0
-
0
j
^
+
6
-
0
k
^
=
0
i
^
+
0
j
^
+
6
k
^
Area of the parallelogram=
a
→
×
b
→
=
0
+
0
+
6
2
=
6
sq. units
ii
Let
:
a
→
=
2
i
^
+
j
^
+
3
k
^
b
→
=
i
^
-
j
^
+
0
k
^
∴
a
→
×
b
→
=
i
^
j
^
k
^
2
1
3
1
-
1
0
=
0
+
3
i
^
-
0
-
3
j
^
+
-
2
-
1
k
^
=
3
i
^
+
3
j
^
-
3
k
^
Area of the parallelogram =
a
→
×
b
→
=
3
2
+
3
2
+
3
2
=
27
=
3
3
sq. units
iii
Let
:
a
→
=
3
i
^
+
j
^
-
2
k
^
b
→
=
1
i
^
-
3
j
^
+
4
k
^
a
→
×
b
→
=
i
^
j
^
k
^
3
1
-
2
1
-
3
4
=
i
^
4
-
6
-
j
^
12
+
2
+
k
^
-
9
-
1
=
-
2
i
^
-
14
j
^
-
10
k
^
Area of the parallelogram=
a
→
×
b
→
=
-
2
2
+
-
14
2
+
-
10
2
=
300
=
10
3
sq. units
iv
Let
:
a
→
=
i
^
-
3
j
^
+
k
^
b
→
=
i
^
+
j
^
+
k
^
a
→
×
b
→
=
i
^
j
^
k
^
1
-
3
1
1
1
1
=
-
3
-
1
i
^
-
1
-
1
j
^
+
1
+
3
k
^
=
-
4
i
^
+
0
j
^
+
4
k
^
Area of the parallelogram=
a
→
×
b
→
=
-
4
2
+
0
+
4
2
=
32
=
4
2
sq. units.
Suggest Corrections
0
Similar questions
Q.
Find the area of the parallelogram whose diagonals are:
(i)
4
i
^
-
j
^
-
3
k
^
and
-
2
j
^
+
j
^
-
2
k
^
(ii)
2
i
^
+
k
^
and
i
^
+
j
^
+
k
^
(iii)
3
i
^
+
4
j
^
and
i
^
+
j
^
+
k
^
(iv)
2
i
^
+
3
j
^
+
6
k
^
and
3
i
^
-
6
j
^
+
2
k
^
Q.
Find the volume of the parallelopiped whose coterminous edges are represented by the vectors:
(i)
a
→
=
2
i
^
+
3
j
^
+
4
k
^
,
b
→
=
i
^
+
2
j
^
-
k
^
,
c
→
=
3
i
^
-
j
^
+
2
k
^
(ii)
a
→
=
2
i
^
-
3
j
^
+
4
k
^
,
b
→
=
i
^
+
2
j
^
-
k
^
,
c
→
=
3
i
^
-
j
^
-
2
k
^
(iii)
a
→
=
11
i
^
,
b
→
=
2
j
^
,
c
→
=
13
k
^
(iv)
a
→
=
i
^
+
j
^
+
k
^
,
b
→
=
i
^
-
j
^
+
k
^
,
c
→
=
i
^
+
2
j
^
-
k
^
Q.
Find
a
→
b
→
c
→
, when
(i)
a
→
=
2
i
^
-
3
j
^
,
b
→
=
i
^
+
j
^
-
k
^
and
c
→
=
3
i
^
-
k
^
(ii)
a
→
=
i
^
-
2
j
^
+
3
k
^
,
b
→
=
2
i
^
+
j
^
-
k
^
and
c
→
=
j
^
+
k
^
(iii)
a
→
=
2
i
^
+
3
j
^
+
k
^
,
b
→
=
i
^
-
2
j
^
+
k
^
and
c
→
=
-
3
i
^
+
j
^
+
2
k
^
Q.
Prove that the following vectors are coplanar:
(i)
2
i
^
-
j
^
+
k
^
,
i
^
-
3
j
^
-
5
k
^
and
3
i
^
-
4
j
^
-
4
k
^
(ii)
i
^
+
j
^
+
k
^
,
2
i
^
+
3
j
^
-
k
^
and
-
i
^
-
2
j
^
+
2
k
^
Q.
The vectors
2
¯
i
−
3
¯
j
+
4
¯
¯
¯
k
,
¯
i
−
2
¯
j
+
3
¯
¯
¯
k
and
3
¯
i
+
¯
j
−
2
¯
¯
¯
k
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Archimedes' Method
MATHEMATICS
Watch in App
Explore more
Archimedes's Method
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app