wiz-icon
MyQuestionIcon
MyQuestionIcon
6
You visited us 6 times! Enjoying our articles? Unlock Full Access!
Question

Find the area of the parallelogram determined by the vectors:
(i) 2i^ and 3j^

(ii) 2i^+j^+3k^ and i^-j^

(iii) 3i^+j^-2k^ and i^-3j^+4k^

(iv) i^-3j^+k^ and i^+j^+k^.

Open in App
Solution

i Let:a=2i^+0j^+0k^ b=0i^+3j^+0k^ a×b=i^j^k^200030 =0-0 i^ -0-0 j^ + 6-0 k^ =0 i^+0j^+6k^Area of the parallelogram=a×b =0+0+62 =6 sq. units

ii Let: a =2i^+j^+3k^ b=i^-j^+0k^ a×b=i^j^k^2131-10 =0+3 i^ -0-3 j^ +-2-1 k^ = 3i^+3j^-3k^Area of the parallelogram =a×b =32+32+32 =27 =33 sq. units

iii Let:a=3i^+j^-2k^b=1i^-3j^+4k^a×b=i^j^k^31-21-34 =i^ 4-6-j^ 12+2+k^ -9-1 =-2i^-14j^-10k^Area of the parallelogram=a×b =-22+-142+-102 =300 =103 sq. units

iv Let: a=i^-3j^+k^ b=i^+j^+k^a×b=i^j^k^1-31111 =-3-1 i^ - 1-1 j^+1+3 k^ =-4i^+0j^+4k^Area of the parallelogram=a×b =-42+0+42 =32 =42 sq. units.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Archimedes' Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon