Find the area of the quadrilateral ABCD whose vertices are respectively A (1, 1), B (7, –3) C (12, 2) and D (7,21).
Area of quadrilateral ABCD = |Area of ΔABC | + |Area of ΔACD|
We have,
∴ Area of ΔABC = 12|(1 × -3 + 7 ×2 + 12 ×1) - (7 × 1 + 12 ×(-3) + 1 × 2 )|
⇒ Area of ΔABC = 12|(-3 + 14 + 12) - (7 - 36 + 2)|
⇒ Area of ΔABC = 12|23 + 27| = 25 sq. units
Also, we have
∴ Area of ΔACD = 12|(1 × 2 + 12 ×21 + 7 ×1) - (12 × 1 + 7 × 2 + 1 × 21 )|
⇒ Area of ΔACD = 12|(2 + 252 + 7) - (12 + 14 + 21)|
⇒ Area of ΔACD = 12|261 - 47| = 107 sq. units
∴ Area of quadrilateral ABCD = 25 + 107 = 132 sq. units