The correct option is A z=∑z1¯z1(z2−z3)∑¯z1(z2−z3)
Let C be the circum-center. Distance of this point from the vertices are equal.
Thus, |z1−c|=|z2−c|=|z3−c|
Hence, (z1−c)(¯z1−¯c)=(z2−c)(¯z2−¯c)=(z3−c)(¯z3−¯c)
From the first 2 terms, we get:
−c¯z1−z1¯c+z1¯z1=−c¯z2−z2¯c+z2¯z2
=> (z1−z2)¯c+(¯z1−¯z2)c=z1¯z1−z2¯z2
=> (z1−z2)¯c+(¯z1−¯z2)c=z1¯z1−z2¯z2
Similarly, from the last 2 terms:
(z2−z3)¯c+(¯z2−¯z3)c=z2¯z2−z3¯z3
Solving for C:
c=∑z1¯z1(z2−z3)∑¯z1(z2−z3)
Hence, (A) is correct.