First expand the term (1+2x)4 by binomial expansion.
(1+2x)4=4C0(1)4(2x)0+4C1(1)3(2x)1+4C2(1)2(2x)2+4C3(1)1(2x)3+4C4(1)0(2x)4
=1+8x+24x2+32x3+16x4 (1)
Now expand the term (2−x)5 by binomial expansion,
(2−x)5=5C0(2)5(x)0−5C1(2)4(x)1+5C2(2)3(x)2−5C3(2)2(x)3+5C4(2)1(x)4−5C5(2)0(x)5
=32−80x+80x2−40x3+10x4−x5 (2)
Multiply the coefficients of those powers which can give the term x4 and then add from equation (1) and (2).
=1×10+8(−40)+24(80)+32(−80)+16(32)
=−438
Therefore, the coefficient of x4 is −438.