Find the coefficient of x4 in the product (1+2x)4×(2−x)5
Using the binomial expansion, we get
(1+2x)4=4C0+4C0+4C1(2x)+4C2(2x)2+4C3(2x)3+4C4(2x)4=1+8x+24x2+32x3+16x4and(2−x)5=25−5C1(44)x+5C2(23)x2−5C3(22)x3+5C4(2)x4(2)x4−5C5x5=32−80x+80x2−40x3+10x4−x5∴(1+2x)4×(2−x)5=(1+8x+24x2+32x3+16x4)×(32−80x+80x2−40x3+10x4−x5)sum of the terms containingx4in the given product
=(1×10x4)+8x(−40x3)+(24x2)(80x2)+(32x3)(−80x)+(16x4×32)=10x4−320x4+1920x4−2560x4+512x2=(10−320+1920−2560+512)x4=−438x4.
Hence the coefficient of x4 in the given product is -438