Given equation :- (1+2x)6(1−x)7
Now, it can be expanded by binomial exponension
as:
(1+2x)6=(6C016(2x)0+6C115(2x)1)+6C2(2x)2+6C3(2x)3+6C4(2x)4+6C5(2x)5)
(1+x)7=(7C017(2x)0+7C116(−x)1)+7C215(−x)2+7C314(−x)3+7C413(−x)4+7C5(−x)5)
Now on multiplying x5 can be finding in many ways, writing all of then below:-
6C016(2x)0×7C5(−x)5+6C1(2x)×7C4x4+6C2(2x)2×7C3(−x)3+6C3(2x)3×7C2(−x)2+6C4(2x)4×7C1(−x)+6C5(x)5
=−7C5x2+12x7C4x5−30x7C3x5+160×7C2x5−240×7C1x5+192x5
=−21x5+420x5−1050x5+3360x5−1680x5+192x5
=121
∴ coefficient of x5=1221