wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the coefficient of x50 in the expression:
(1+x)1000+2x(1+x)999+3x2(1+x)998+....+1001x1000

A
1000C50
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1001C50
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1002C50
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1003C50
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1002C50
Let S=(1+x)1000+2x(1+x)999+3x2(1+x)998+3x3(1+x)997+....+1001x1000 .....(1)
x(1+x)S=x(1+x)999+2x2(1+x)998+3x3(1+x)997+....+1000x1000+1001(1+x)x1001 ....(2)
On subtracting (2) from (1), we get

(1x1+x)S=(1+x)1000+x(1+x)999+x2(1+x)998+x3(1+x)997+....+x10001001(1+x)x1001
(11+x)S=(1+x)1000+x(1+x)999+x2(1+x)998+x3(1+x)997+....+x10001001(1+x)x1001
S=(1+x)1001+x(1+x)1000+x2(1+x)999+x3(1+x)998+....+x1000(1+x)1001x1001
S=(1+x)1001[1(x1+x)1001]1x1+x1001x1001
S=(1+x)1002[1(x1+x)1001]1001x1001
S=(1+x)1002(1+x)x10011001x1001
It is clear that in above sum , only first term can have x50

So , coefficient of x50 in (1+x)1002 is 1002C50

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Binomial Coefficients
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon