Find the coefficient of x50 in the expression: (1+x)1000+2x(1+x)999+3x2(1+x)998+....+1001x1000
A
1000C50
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1001C50
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1002C50
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1003C50
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B1002C50 Let S=(1+x)1000+2x(1+x)999+3x2(1+x)998+3x3(1+x)997+....+1001x1000 .....(1) x(1+x)S=x(1+x)999+2x2(1+x)998+3x3(1+x)997+....+1000x1000+1001(1+x)x1001 ....(2) On subtracting (2) from (1), we get
(1−x1+x)S=(1+x)1000+x(1+x)999+x2(1+x)998+x3(1+x)997+....+x1000−1001(1+x)x1001 ⇒(11+x)S=(1+x)1000+x(1+x)999+x2(1+x)998+x3(1+x)997+....+x1000−1001(1+x)x1001 ⇒S=(1+x)1001+x(1+x)1000+x2(1+x)999+x3(1+x)998+....+x1000(1+x)−1001x1001 ⇒S=(1+x)1001[1−(x1+x)1001]1−x1+x−1001x1001 ⇒S=(1+x)1002[1−(x1+x)1001]−1001x1001 ⇒S=(1+x)1002−(1+x)x1001−1001x1001 It is clear that in above sum , only first term can have x50