wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the derivative of xsinnx, where n is an integer.

Open in App
Solution

Method 1: Calculating derivative for pn
Let f(x)=pn where p be a function in x.
For n=1
f'(x)=p'
For n=2
f'(x)=(p2)'=(pp)'=pp'+p'p=2pp
For n=3
f'(x)=(p3)'=(pp2)'=p(2pp)+p'p2
f(x)=2p2p+p2p
f(x)=3p2p'
Similarly, for n=n,
f'(x)=(pn)'
f(x)=npn1p'

Calculating derivative of sinnx
Let g(x)=sinnx
Differentiating with respect to x
g'(x)=(sinnx)'=(sinx)n)
From above formula
g'(x)=n(sinx)n1(sinx)
g'(x)=n(sinx)n1(cosx)
g'(x)=nsinn1xcosx
Required derivative
Let p(x)=xsinnx
Differentiating with respect to x
p'(x)=ddx(xsinnx)
p(x)=(sinnx)ddx(x)(x)ddx(sinnx)(sinnx)2
p(x)=1(sinnx)x(nsinn1xcosx)(sinnx)2
p(x)=sinn1x(sinxnxcosx)sin2nx
p(x)=sinxnxcosxsinn+1x
p(x)=sin xn.x cos xsinn+1x

Method 2:
Let p(x)=xsinnx
Differentiating with respect to x
p(x)=ddx(xsinnx)
p(x)=(sinnx)ddx(x)(x)ddx(sinnx)(sinnx)2
Using Chain Rule, we get
p(x)=1(sinnx)x(nsinn1xcosx)(sinnx)2
p(x)=sinn1x(sinxnxcosx)sin2nx
p(x)=sinxnxcosxsin2nxsin(n1)x
p(x)=sinxnxcosxsin2nn+1x
p(x)=sinxnxcosxsinn+1x


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon