Method 1: Calculating derivative for pn
Let f(x)=pn where p be a function in x.
For n=1
f'(x)=p'
For n=2
f'(x)=(p2)'=(p⋅p)'=pp'+p'p=2pp′
For n=3
f'(x)=(p3)'=(p⋅p2)'=p(2pp′)+p'p2
⇒f′(x)=2p2p′+p2p′
⇒f′(x)=3p2p'
Similarly, for n=n,
f'(x)=(pn)'
⇒f′(x)=npn−1p'
Calculating derivative of sinnx
Let g(x)=sinnx
Differentiating with respect to x
⇒g'(x)=(sinnx)'=(sinx)n)′
From above formula
g'(x)=n(sinx)n−1(sinx)′
⇒g'(x)=n(sinx)n−1(cosx)
⇒g'(x)=nsinn−1xcosx
Required derivative
Let p(x)=xsinnx
Differentiating with respect to x
⇒p'(x)=ddx(xsinnx)
⇒p′(x)=(sinnx)ddx(x)−(x)ddx(sinnx)(sinnx)2
⇒p′(x)=1(sinnx)−x(nsinn−1xcosx)(sinnx)2
⇒p′(x)=sinn−1x(sinx−n⋅xcosx)sin2nx
⇒p′(x)=sinx−n⋅xcosxsinn+1x
⇒p′(x)=sin x−n.x cos xsinn+1x
Method 2:
Let p(x)=xsinnx
Differentiating with respect to x
⇒p′(x)=ddx(xsinnx)
⇒p′(x)=(sinnx)ddx(x)−(x)ddx(sinnx)(sinnx)2
Using Chain Rule, we get
⇒p′(x)=1(sinnx)−x(nsinn−1xcosx)(sinnx)2
⇒p′(x)=sinn−1x(sinx−n⋅x⋅cosx)sin2nx
⇒p′(x)=sinx−nxcosxsin2nx⋅sin−(n−1)x
⇒p′(x)=sinx−nxcosxsin2n−n+1x
∴p′(x)=sinx−nxcosxsinn+1x