wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the derivative of 3sinx from first principles.

Open in App
Solution

y=(sinx)13
According to first principle , the derivative of y=f(x)
f(x)=dydx=limh0f(x+h)f(x)h
Now for y=(sinx)13=f(x)
f(x+h)=(sin(x+h))13f(x)=limh0[sin(x+h)]13[sinx]13h
We know that:-
a3b3=(ab)(a2+b2+ab)(ab)=(a3b3)(a2+b2+ab)f(x)=limh0([sin(x+h)]13)3((sinx)13)3h[sin23(x+h)+sin23x+sin13(x+h)sin13x]=limh0sin(x+h)sinxh(sin23(x+h)+sin23x+sin13(x+h)sin13x)=limh02sinh2cos(x+h2)h(sin23(x+h)+sin23x+sin13(x+h)sin13x)=limh0sinh2h2limh0cos(x+h2)sin23(x+h)+sin23x+sin13(x+h)sin13x=1×cosxsin23x+sin23x+sin13xsin13x=cosx3sin23x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon