Let f(x)=cosecx
Thus using first principle,
f′(x)=limh→0f(x+h)−f(x)h
f′(x)=limh→01h[cosec(x+h)−cosecx]
= limh→01h[1sin(x+h)−1sinx]
= limh→01h[sinx−sin(x+h)sin(x+h)sinx]
= limh→01h⎡⎢
⎢⎣2cos(x+x+h2)⋅sin(x−x−h2)sin(x+h)sinx⎤⎥
⎥⎦
= limh→01h⎡⎢
⎢⎣2cos(2x+h2)sin(−h2)sin(x+h)sinx⎤⎥
⎥⎦
=limh→0−cos(2x+h2),sin(h2)(h2)sin(x+h)sinx
= limh→0⎛⎜
⎜⎝−cos(2x+h2)sin(x+h)sinx⎞⎟
⎟⎠.limh2→0sin(h2)(h2)
= (−cosxsinxsinx).1=−cosecxcotx