wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the derivative of the following functions: cosecx

Open in App
Solution

Let f(x)=cosecx
Thus using first principle,
f(x)=limh0f(x+h)f(x)h
f(x)=limh01h[cosec(x+h)cosecx]
= limh01h[1sin(x+h)1sinx]
= limh01h[sinxsin(x+h)sin(x+h)sinx]
= limh01h⎢ ⎢2cos(x+x+h2)sin(xxh2)sin(x+h)sinx⎥ ⎥
= limh01h⎢ ⎢2cos(2x+h2)sin(h2)sin(x+h)sinx⎥ ⎥
=limh0cos(2x+h2),sin(h2)(h2)sin(x+h)sinx
= limh0⎜ ⎜cos(2x+h2)sin(x+h)sinx⎟ ⎟.limh20sin(h2)(h2)
= (cosxsinxsinx).1=cosecxcotx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon