Step 1:
Given f(x)=2x2+3x−5
We know that f′(x)=limh→0f(x+h)−f(x)h
⇒f′(x)=limh→0(2(x+h)2+3(x+h)−5)−(2x2+3x−5)h
⇒f′(x)=limh→0(2(x2+h2+2xh)+3(x+h)−5)−(2x2+3x−5)h
⇒f′(x)=limh→02x2+2h2+4xh+3x+3h−5−2x2−3x+5h
⇒f′(x)=limh→02h2+4xh+3hh
⇒f′(x)=limh→0h(2h+4x+3)h
⇒f′(x)=limh→0(2h+4x+3)
⇒f′(x)=4x+3
Putting x=−1
⇒f′(−1)=4(−1)+3
⇒f′(−1)=−4+3
⇒f′(−1)=−1
Hence, f′(−1)=−1
Step 2: Solve for proving
For f′(0)
⇒f′(x)=4x+3
⇒f′(0)=4⋅0+3
⇒f′(0)=3
Now,
f′(0)+3f′(−1)=3+3(−1)
=0
Hence proved.
Therefore, value of f′(−1) is −1 and its proved that f′(0)+3f′(−1)=0.