wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the differential coefficient with respect to x of e2x+e2xe2xe2x.

Open in App
Solution

Suppose that
y=e2x+e2xe2xe2x
dydx=ddx[e2x+e2xe2xe2x]
=(e2xe2x)ddx(e2x+e2x)(e2x+e2x)ddx(e2xe2x)(e2xe2x)2
=(e2xe2x)(2e2x2e2x)(e2x+e2x)(2e2x+2e2x)(e2xe2x)2
=2[(e2xe2x)2(e2x+e2x)2](e2xe2x)2
=2[e4x+e4x2e4xe4x2](e2xe2x)2
=2×(4)(e2xe2x)2
=8(e2xe2x)2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon