Find the domain and the range of the real function, f(x)=3−xx−3
We have, f(x)=3−xx−3
Clearly, f(x) is defined for all real values of x for which x−3≠0, i.e., x≠3.
∴dom (f)=R−{3}
Let y=f(x). Then,
y=3−xx−3⇒y=−1, when x−3≠0
⇒y=−1, when x≠3
∴ range (f) = {-1}
Hence, dom (f)=R−{3} and range (f) = {-1}.