Consider the given equation,
y+2x−3=0 …..(1)
Differentiate with respect to x , we get
dydx+ddx(2x−3)=ddx0
dydx+2(−1)×1(x−3)2=0
dydx=2(x−3)2
But given that dydx=2
2=2(x−3)2
1=1(x−3)2
(x−3)2=1
x−3=±1
x=4,x=2
When,x=4 put in equation 1st we get y=−2
When, x=2,theny=2
Now, if (x,y)=(4,−2) $$
$\begin{align}
y−(−2)=2(x−4)
y+2=2x−8
2x−y=10