Any tangent to the circle x2+y2=a2 is
y=mx±a√1+m2.
Its intercepts on the axes are
OA=h=±(a/m)√1+m2
and k=±a√(1+m2).
Area of the triangle formed by the tangent and the axes will be 12hk=a2 given.
∴±12⋅am√1+m2⋅a√1+m2=a2
or (1+m2)=±2m or 1+m2±2m=0
or (1±m2)=0∴m=±1.
Hence the required tangents are y=±x±a√2.