Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C (2, 3).
Let AD be the bisector of ∠A Then BD:DC=AB:AC
Now,|AB|=√(4−0)2+(3−0)2=5|AC|=√(4−2)2+(3−3)2=2⇒ ABAC=BDDC=52⇒ D divides BC in the ratio 5 : 2So, coordinates of D are(5×2+05+2,5×3+05+2)=(107,157)∴ The equation of AD isy−3=3−1573−107(x−4)y−3=21−528−10(x−4)⇒ y−3=13(x−4)⇒ 3(y−3)=x−4⇒ x−3y+9−4=0⇒ x−3y+5=0