Find the equation of the circle passing through the points (1, -2) and (4, -3) and whose centre lies on the line 3x + 4y = 7.
Let (h, k) be the centre of circle.
Since, centre of circle lies on the line 3x + 4y = 7.
∴ 3h+4k=7 ...(i)
Since, this circle passes through the points A(1, -2) and B(4, -3),
∴ OA = OB [radii of circle]
⇒ OA2=OB2
⇒ (1−h)2+(−2−k)2=(4−h)2+(−3−k)2
⇒ 1−2h+h2+4+4k+k2=16−8h+h2+9+6k+k2
⇒ 6h−2k=20
∴ 3h−k=10 ...(ii)
On solving Eqs. (i) and (ii), we get
h=4715 and k=−35
So, the coordinates of centre of circle (4715,−35).
∴ Radius of circle = OA
= √(1−4715)2+(−2+35)2=√(−3215)2+(−75)2
= √1024225+4925=√1024+441225=√146515
So, the equation of circle having centre (4715,−35) and radius √146515 is
(x−4715)2+(y+35)2=(√146515)2
∴ (x−4715)2+(y+35)2=1465225