Let x+21=y−32=z+14=λ x−12=y−23=z−34=μ.
So, the coordinates of random points on these lines are P(λ−2,2λ+3,4λ−1) and
Q(2μ+1,3μ+2,4μ+3). Let A(1, 1, 1).
Now d.r.'s of line AP are λ−3,2λ+2,4λ−2) and, d.r.'s of line AQ are 2μ,3μ+1,4μ+2.
Therefore λ−32μ=2λ+23μ+1=4λ−24μ+2=k say.
⇒λ−3=2kμ,2λ+2=k(3μ+1),2λ−1=k(2μ+1)
⇒λ−32=kμ,2λ+2=3μk+k,2λ−1=2μk+k
∴2λ+2=3×λ−32+k,2λ−1=2×λ−32+k⇒λ+132=k,2λ−1=λ−3+k
∴λ+2=λ+132 ⇒2λ+4=λ+13 ⇒λ=9
Also 9−32μ=18+23μ+1 ⇒32μ=103μ+1 ⇒μ=311
Therefore the d.r.'s of the required line through point A are 6, 20, 34 i.e., 3, 10, 17.
Hence the equation is: x−13=y−110=z−117.