Find the equation of the tangent at (2,3) on the curve y2=ax3+b is y=4x−5. Find the value of a and b
Open in App
Solution
y2=ax3+b2ydydx=3ax2at(2,3)6dydx=3a(2)2=12a∴a=12dydx Since equation of tangent is y=4x-5 slope =4−dydx=2a∴a=2 ∴ eqn: of curve y2=2x3+b Point (2,3)is on curve ∴32=2(2)3+b⇒9=1.6+b or b=−7 a=2&b=−7