1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Length of Subnormal
Find the equa...
Question
Find the equations of the tangent and the normal to the following curves at the indicated points.
(i)
y
=
x
4
−
bx
3
+ 13
x
2
− 10
x
+ 5 at (0, 5) [NCERT]
(ii)
y
=
x
4
− 6
x
3
+ 13
x
2
− 10
x
+ 5 at
x
= 1 [NCERT, CBSE 2011]
(iii)
y
=
x
2
at (0, 0) [NCERT]
(iv)
y
= 2
x
2
− 3
x
− 1 at (1, −2)
(v)
y
2
=
x
3
4
-
x
at
2
,
-
2
(vi)
y
=
x
2
+ 4
x
+ 1 at
x
= 3 [CBSE 2004]
(vii)
x
2
a
2
+
y
2
b
2
=
1
at
a
cos
θ
,
b
sin
θ
(viii)
x
2
a
2
-
y
2
b
2
=
1
at
a
sec
θ
,
b
tan
θ
(ix)
y
2
= 4
a
x
at
a
m
2
,
2
a
m
(x)
c
2
x
2
+
y
2
=
x
2
y
2
at
c
cos
θ
,
c
sin
θ
(ix)
xy
=
c
2
at
c
t
,
c
t
(xii)
x
2
a
2
+
y
2
b
2
=
1
at
x
1
,
y
1
(xiii)
x
2
a
2
-
y
2
b
2
=
1
at
x
0
,
y
0
[NCERT]
(xiv)
x
2
3
+
y
2
3
= 2 at (1, 1)
[NCERT]
(xv)
x
2
= 4
y
at (2, 1)
(xvi)
y
2
= 4
x
at (1, 2)
[NCERT]
(xvii) 4
x
2
+ 9
y
2
= 36 at (3cosθ, 2sinθ) [CBSE 2011]
(xviii) y
2
= 4ax at (x
1
, y
1
) [CBSE 2012]
(xix)
x
2
a
2
-
y
2
b
2
=
1
at
2
a
,
b
[CBSE 2014]
Open in App
Solution
(i)
y
=
x
4
-
b
x
3
+
13
x
2
-
10
x
+
5
Differentiating both sides w.r.t.
x
,
d
y
d
x
=
4
x
3
-
3
b
x
2
+
26
x
-
10
Slope of tangent,
m
=
d
y
d
x
0
,
5
=-10
Given
x
1
,
y
1
=
0
,
5
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
5
=
-
10
x
-
0
⇒
y
-
5
=
-
10
x
⇒
y
+
10
x
-
5
=
0
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
5
=
1
10
x
-
0
⇒
10
y
-
50
=
x
⇒
x
-
10
y
+
50
=
0
(ii)
y
=
x
4
-
6
x
3
+
13
x
2
-
10
x
+
5
When
x
=
1
,
y
=
1
-
6
+
13
-
10
+
5
=
3
So
,
x
1
,
y
1
=
1
,
3
Now
,
y
=
x
4
-
6
x
3
+
13
x
2
-
10
x
+
5
Differentiating both sides w.r.t.
x
,
d
y
d
x
=
4
x
3
-
18
x
2
+
26
x
-
10
Slope of tangent,
m
=
d
y
d
x
1
,
3
=4-18+
26
-
10
=
2
Equation of tangent is,
y
-
y
1
=
2
x
-
x
1
⇒
y
-
3
=
2
x
-
1
⇒
y
-
3
=
2
x
-
2
⇒
2
x
-
y
+
1
=
0
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
3
=
-
1
2
x
-
1
⇒
3
y
-
6
=
-
x
+
1
⇒
x
+
3
y
-
7
=
0
(iii)
y
=
x
2
Differentiating both sides w.r.t.
x
,
d
y
d
x
=
2
x
Given
x
1
,
y
1
=
0
,
0
Slope of tangent,
m
=
d
y
d
x
0
,
0
=2
0
=0
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
0
=
0
x
-
0
⇒
y
=
0
Equation of normal is,
⇒
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
0
=
-
1
0
x
-
0
⇒
x
=
0
(iv)
y
=2
x
2
-3
x
-1
Differentiating both sides w.r.t.
x
,
d
y
d
x
=
4
x
-
3
Given
x
1
,
y
1
=
1
,
-
2
Slope of tangent,
m
=
d
y
d
x
1
,
-
2
=4-3=1
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
+
2
=
1
x
-
1
⇒
y
+
2
=
x
-
1
⇒
x
-
y
-
3
=
0
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
+
2
=
-
1
x
-
1
⇒
y
+
2
=
-
x
+
1
⇒
x
+
y
+
1
=
0
(v)
y
2
=
x
3
4
-
x
Differentiating both sides w.r.t.
x
,
2
y
d
y
d
x
=
4
-
x
3
x
2
-
x
3
-
1
4
-
x
2
=
12
x
2
-
3
x
3
+
x
3
4
-
x
2
=
12
x
2
-
2
x
3
4
-
x
2
d
y
d
x
=
12
x
2
-
2
x
3
2
y
4
-
x
2
Given
x
1
,
y
1
=
2
,
-
2
Slope of tangent,
m
=
d
y
d
x
2
,
-
2
=
48
-
16
-
16
=-2
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
+
2
=
-
2
x
-
2
⇒
y
+
2
=
-
2
x
+
4
⇒
2
x
+
y
-
2
=
0
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
+
2
=
1
2
x
-
2
⇒
2
y
+
4
=
x
-
2
⇒
x
-
2
y
-
6
=
0
(vi)
y
=
x
2
+
4
x
+
1
Differentiating both sides w.r.t.
x
,
d
y
d
x
=
2
x
+
4
When
x
=3,
y
=
9
+
12
+
1
=
22
So
,
x
1
,
y
1
=
3
,
22
Slope of tangent,
m
=
d
y
d
x
x
=
3
=10
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
22
=
10
x
-
3
⇒
y
-
22
=
10
x
-
30
⇒
10
x
-
y
-
8
=
0
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
22
=
-
1
10
x
-
3
⇒
10
y
-
220
=
-
x
+
3
⇒
x
+
10
y
-
223
=
0
(vii)
x
2
a
2
+
y
2
b
2
=
1
Differentiating both sides w.r.t.
x
,
⇒
2
x
a
2
+
2
y
b
2
d
y
d
x
=
0
⇒
2
y
b
2
d
y
d
x
=
-
2
x
a
2
⇒
d
y
d
x
=
-
x
b
2
y
a
2
Slope of tangent,
m
=
d
y
d
x
a
cos
θ
,
b
sin
θ
=
-
a
cos
θ
b
2
b
sin
θ
a
2
=
-
b
cos
θ
a
sin
θ
Given
x
1
,
y
1
=
a
cos
θ
,
b
sin
θ
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
b
sin
θ
=
-
b
cos
θ
a
sin
θ
x
-
a
cos
θ
⇒
a
y
sin
θ
-
a
b
sin
2
θ
=
-
b
x
cos
θ
+
a
b
cos
2
θ
⇒
b
x
cos
θ
+
a
y
sin
θ
=
a
b
Dividing by ab,
⇒
x
a
cos
θ
+
y
b
sin
θ
=
1
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
b
sin
θ
=
a
sin
θ
b
cos
θ
x
-
a
cos
θ
⇒
b
y
cos
θ
-
b
2
sin
θ
cos
θ
=
a
x
sin
θ
-
a
2
sin
θ
cos
θ
⇒
a
x
sin
θ
-
b
y
cos
θ
=
a
2
-
b
2
sin
θ
cos
θ
Dividing by
sin
θ
cos
θ
,
a
x
sec
θ
-
b
y
cosec
θ
=
a
2
-
b
2
(viii)
x
2
a
2
-
y
2
b
2
=
1
Differentiating both sides w.r.t.
x
,
⇒
2
x
a
2
-
2
y
b
2
d
y
d
x
=
0
⇒
2
y
b
2
d
y
d
x
=
2
x
a
2
⇒
d
y
d
x
=
x
b
2
y
a
2
Slope of tangent,
m
=
d
y
d
x
a
sec
θ
,
b
tan
θ
=
a
sec
θ
b
2
b
tan
θ
a
2
=
b
a
sin
θ
Given
x
1
,
y
1
=
a
sec
θ
,
b
tan
θ
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
b
tan
θ
=
b
a
sin
θ
x
-
a
sec
θ
⇒
a
y
sin
θ
-
a
b
sin
2
θ
cos
θ
=
b
x
-
a
b
cos
θ
⇒
a
y
sin
θ
cos
θ
-
a
b
sin
2
θ
cos
θ
=
b
x
cos
θ
-
a
b
cos
θ
⇒
a
y
sin
θ
cos
θ
-
a
b
sin
2
θ
=
b
x
cos
θ
-
a
b
⇒
b
x
cos
θ
-
a
y
sin
θ
cos
θ
=
a
b
1
-
sin
2
θ
⇒
b
x
cos
θ
-
a
y
sin
θ
cos
θ
=
a
b
cos
2
θ
Dividing by
ab
cos
2
θ
,
⇒
x
a
sec
θ
-
y
b
tan
θ
=
1
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
b
tan
θ
=
-
a
sin
θ
b
x
-
a
sec
θ
⇒
y
b
-
b
2
tan
θ
=
-
a
x
sin
θ
+
a
2
tan
θ
⇒
a
x
sin
θ
+
b
y
=
a
2
+
b
2
tan
θ
Dividing by tan
θ
,
a
x
cos
θ
+
b
y
cot
θ
=
a
2
+
b
2
(ix)
y
2
=4
ax
Differentiating both sides w.r.t.
x
,
2
y
d
y
d
x
=
4
a
⇒
d
y
d
x
=
2
a
y
Given
x
1
,
y
1
=
a
m
2
,
2
a
m
Slope of tangent =
d
y
d
x
a
m
2
,
2
a
m
=
2
a
2
a
m
=
m
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
2
a
m
=
m
x
-
a
m
2
⇒
m
y
-
2
a
m
=
m
m
2
x
-
a
m
2
⇒
m
y
-
2
a
=
m
2
x
-
a
⇒
m
2
x
-
m
y
+
a
=
0
Equation of normal is,
y
-
y
1
=
1
Slope
of
tangent
x
-
x
1
⇒
y
-
2
a
m
=
-
1
m
x
-
a
m
2
⇒
m
y
-
2
a
m
=
-
1
m
m
2
x
-
a
m
2
⇒
m
3
y
-
2
a
m
2
=
-
m
2
x
+
a
⇒
m
2
x
+
m
3
y
-
2
a
m
2
-
a
=
0
(x)
c
2
x
2
+
y
2
=
x
2
y
2
Differentiating both sides w.r.t.
x
,
⇒
2
x
c
2
+
2
y
c
2
d
y
d
x
=
x
2
2
y
d
y
d
x
+
2
x
y
2
⇒
d
y
d
x
2
y
c
2
-
2
x
2
y
=
2
x
y
2
-
2
x
c
2
⇒
d
y
d
x
=
x
y
2
-
x
c
2
y
c
2
-
x
2
y
Slope of tangent,
m
=
d
y
d
x
c
cos
θ
,
c
sin
θ
=
c
3
cos
θ
sin
2
θ
-
c
3
cos
θ
c
3
sin
θ
-
c
3
cos
2
θ
sin
θ
=
1
-
sin
2
θ
cos
θ
sin
2
θ
cos
2
θ
-
1
cos
2
θ
sin
θ
=
c
o
s
2
θ
cos
θ
sin
2
θ
×
cos
2
θ
sin
θ
-
sin
2
θ
=
-
cos
3
θ
sin
3
θ
Given
x
1
,
y
1
=
c
cos
θ
,
c
sin
θ
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
c
sin
θ
=
-
cos
3
θ
sin
3
θ
x
-
c
cos
θ
⇒
y
sin
θ
-
c
sin
θ
=
-
cos
3
θ
sin
3
θ
x
cos
θ
-
c
cos
θ
⇒
sin
2
θ
y
sin
θ
-
c
=
-
cos
2
θ
x
cos
θ
-
c
⇒
y
sin
3
θ
-
c
sin
2
θ
=
-
x
cos
3
θ
+
c
cos
2
θ
⇒
x
cos
3
θ
+
y
sin
3
θ
=
c
s
i
n
2
θ
+
cos
2
θ
⇒
x
cos
3
θ
+
y
sin
3
θ
=
c
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
c
sin
θ
=
sin
3
θ
cos
3
θ
x
-
c
cos
θ
⇒
cos
3
θ
y
-
c
sin
θ
=
sin
3
θ
x
-
c
cos
θ
⇒
y
cos
3
θ
-
c
cos
3
θ
sin
θ
=
x
sin
3
θ
-
c
sin
3
θ
cos
θ
⇒
x
sin
3
θ
-
y
cos
3
θ
=
c
sin
3
θ
cos
θ
-
c
cos
3
θ
sin
θ
⇒
x
sin
3
θ
-
y
cos
3
θ
=
c
sin
4
θ
-
cos
4
θ
cos
θ
sin
θ
⇒
x
sin
3
θ
-
y
cos
3
θ
=
c
sin
2
θ
+
cos
2
θ
sin
2
θ
-
cos
2
θ
cos
θ
sin
θ
⇒
sin
3
θ
-
y
cos
3
θ
=
2
c
-
cos
2
θ
-
sin
2
θ
2
cos
θ
sin
θ
⇒
sin
3
θ
-
y
cos
3
θ
=
2
c
-
cos
2
θ
sin
2
θ
⇒
sin
3
θ
-
y
cos
3
θ
=
-
2
c
c
o
t
2
θ
⇒
sin
3
θ
-
y
cos
3
θ
+
2
c
c
o
t
2
θ
=
0
(xi)
xy=c
2
Differentiating both sides w.r.t.
x
,
x
d
y
d
x
+
y
=
0
⇒
d
y
d
x
=
-
y
x
Given
x
1
,
y
1
=
c
t
,
c
t
Slope of tangent,
m
=
d
y
d
x
c
t
,
c
t
=
-
c
t
c
t
=
-
1
t
2
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
c
t
=
-
1
t
2
x
-
c
t
⇒
y
t
-
c
t
=
-
1
t
2
x
-
c
t
⇒
y
t
2
-
c
t
=
-
x
+
c
t
⇒
x
+
y
t
2
=
2
c
t
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
c
t
=
t
2
x
-
c
t
⇒
y
t
-
c
=
t
3
x
-
c
t
4
⇒
x
t
3
-
y
t
=
c
t
4
-
c
(xii)
x
2
a
2
+
y
2
b
2
=
1
Differentiating both sides w.r.t.
x
,
2
x
a
2
+
2
y
b
2
d
y
d
x
=
0
⇒
2
y
b
2
d
y
d
x
=
-
2
x
a
2
⇒
d
y
d
x
=
-
x
b
2
y
a
2
Slope of tangent,
m
=
d
y
d
x
x
1
,
y
1
=
-
x
1
b
2
y
1
a
2
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
y
1
=
-
x
1
b
2
y
1
a
2
x
-
x
1
⇒
y
y
1
a
2
-
y
1
2
a
2
=
-
x
x
1
b
2
+
x
1
2
b
2
⇒
x
x
1
b
2
+
y
y
1
a
2
=
x
1
2
b
2
+
y
1
2
a
2
.
.
.
1
Since
x
1
,
y
1
lies on the given curve.Therefore,
x
1
2
a
2
+
y
1
2
b
2
=
1
⇒
x
1
2
b
2
+
y
1
2
a
2
a
2
b
2
=
1
⇒
x
1
2
b
2
+
y
1
2
a
2
=
a
2
b
2
Substituting this in (1), we get
x
x
1
b
2
+
y
y
1
a
2
=
a
2
b
2
Dividing this by a
2
b
2
,
x
x
1
a
2
+
y
y
1
b
2
=
1
Equation of normal is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
y
1
=
y
1
a
2
x
1
b
2
x
-
x
1
⇒
y
x
1
b
2
-
x
1
y
1
b
2
=
x
y
1
a
2
-
x
1
y
1
a
2
⇒
x
y
1
a
2
-
y
x
1
b
2
=
x
1
y
1
a
2
-
x
1
y
1
b
2
⇒
x
y
1
a
2
-
y
x
1
b
2
=
x
1
y
1
a
2
-
b
2
Dividing by
x
1
y
1
a
2
x
x
1
-
b
2
y
y
1
=
a
2
-
b
2
(xiii)
x
2
a
2
-
y
2
b
2
=
1
Differentiating both sides w.r.t.
x
,
2
x
a
2
-
2
y
b
2
d
y
d
x
=
0
⇒
2
y
b
2
d
y
d
x
=
2
x
a
2
⇒
d
y
d
x
=
x
b
2
y
a
2
Slope of tangent,
m
=
d
y
d
x
x
0
,
y
0
=
x
0
b
2
y
0
a
2
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
y
0
=
x
0
b
2
y
0
a
2
x
-
x
0
⇒
y
y
0
a
2
-
y
0
2
a
2
=
x
x
0
b
2
-
x
0
2
b
2
x
x
0
b
2
-
y
y
0
a
2
=
x
0
2
b
2
-
y
0
2
a
2
.
.
.
1
Since
x
0
,
y
0
lies on the given curve,
⇒
x
0
2
a
2
-
y
0
2
b
2
=
1
⇒
x
0
2
b
2
-
y
0
2
a
2
=
a
2
b
2
Substituting this in (1), we get
⇒
x
x
0
b
2
-
y
y
0
a
2
=
a
2
b
2
Dividing this by
a
2
b
2
x
x
0
a
2
-
y
y
0
b
2
=
1
Equation of normal is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
y
0
=
-
y
0
a
2
x
0
b
2
x
-
x
0
⇒
y
x
0
b
2
-
x
0
y
0
b
2
=
-
x
y
0
a
2
+
x
0
y
0
a
2
⇒
x
y
0
a
2
+
y
x
0
b
2
=
x
0
y
0
a
2
+
x
0
y
0
b
2
⇒
x
y
0
a
2
+
y
x
0
b
2
=
x
0
y
0
a
2
+
b
2
Dividing by
x
0
y
0
a
2
x
x
0
+
b
2
y
y
0
=
a
2
+
b
2
(xiv)
x
2
3
+
y
2
3
=
2
Differentiating both sides w.r.t.
x
,
2
3
x
-
1
3
+
2
3
y
-
1
3
d
y
d
x
=
0
⇒
d
y
d
x
=
-
x
-
1
3
y
-
1
3
=
-
y
1
3
x
1
3
Slope of tangent,
m
=
d
y
d
x
1
,
1
=
-
1
1
=-1
Given
x
1
,
y
1
=
1
,
1
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
1
=
-
1
x
-
1
⇒
y
-
1
=
-
x
+
1
⇒
x
+
y
-
2
=
0
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
1
=
1
x
-
1
⇒
y
-
1
=
x
-
1
⇒
y
-
x
=
0
(xv)
x
2
=
4
y
Differentiating both sides w.r.t.
x
,
2
x
=
4
d
y
d
x
⇒
d
y
d
x
=
x
2
Slope of tangent,
m
=
d
y
d
x
2
,
1
=
2
2
=1
Given
x
1
,
y
1
=
2
,
1
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
1
=
1
x
-
2
⇒
y
-
1
=
x
-
2
⇒
x
-
y
-
1
=
0
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
1
=
-
1
x
-
2
⇒
y
-
1
=
-
x
+
2
⇒
x
+
y
-
3
=
0
(xvi)
y
2
=
4
x
Differentiating both sides w.r.t.
x
,
2
y
d
y
d
x
=
4
⇒
d
y
d
x
=
2
y
Slope of tangent,
m
=
d
y
d
x
1
,
2
=
2
2
=1
Given
x
1
,
y
1
=
1
,
2
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
2
=
1
x
-
1
⇒
y
-
2
=
x
-
1
⇒
x
-
y
+
1
=
0
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
2
=
-
1
x
-
1
⇒
y
-
2
=
-
x
+
1
⇒
x
+
y
-
3
=
0
(xvii) Equation of tangent:
4
x
2
+
9
y
2
=
36
Differentiating both sides w.r.t.
x
,
8
x
+
18
y
d
y
d
x
=
0
⇒
18
y
d
y
d
x
=
-
8
x
⇒
d
y
d
x
=
-
8
x
18
y
=
-
4
x
9
y
Slope of tangent,
m
=
d
y
d
x
3
cos
θ
,
2
sin
θ
=
-
12
cos
θ
18
sin
θ
=
-
2
cos
θ
3
sin
θ
Given
x
1
,
y
1
=
3
cos
θ
,
2
sin
θ
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
2
sin
θ
=
-
2
cos
θ
3
sin
θ
x
-
3
cos
θ
⇒
3
y
sin
θ
-
6
sin
2
θ
=
-
2
x
cos
θ
+
6
cos
2
θ
⇒
2
x
cos
θ
+
3
y
sin
θ
=
6
cos
2
θ
+
sin
2
θ
⇒
2
x
cos
θ
+
3
y
sin
θ
=
6
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
2
sin
θ
=
3
sin
θ
2
cos
θ
x
-
3
cos
θ
⇒
2
y
cos
θ
-
4
sin
θ
cos
θ
=
3
x
sin
θ
-
9
sin
θ
cos
θ
⇒
3
x
sin
θ
-
2
y
cos
θ
-
5
sin
θ
cos
θ
=
0
(xviii)
y
2
=4
ax
Differentiating both sides w.r.t.
x
,
2
y
d
y
d
x
=
4
a
⇒
d
y
d
x
=
2
a
y
At
x
1
,
y
1
Slope of tangent =
d
y
d
x
x
1
,
y
1
=
2
a
y
1
=
m
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
y
1
=
2
a
x
-
x
1
y
1
⇒
y
y
1
-
y
1
2
=
2
a
x
-
2
a
x
1
⇒
y
y
1
-
4
a
x
1
=
2
a
x
-
2
a
x
1
⇒
y
y
1
=
2
a
x
+
2
a
x
1
⇒
y
y
1
=
2
a
x
+
x
1
Equation of normal is,
y
-
y
1
=
1
Slope
of
tangent
x
-
x
1
⇒
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
y
1
=
-
y
1
2
a
x
-
x
1
(xix)
x
2
a
2
-
y
2
b
2
=
1
Differentiating both sides w.r.t.
x
,
2
x
a
2
-
2
y
b
2
d
y
d
x
=
0
⇒
2
y
b
2
d
y
d
x
=
2
x
a
2
⇒
d
y
d
x
=
x
b
2
y
a
2
Slope of tangent,
m
=
d
y
d
x
2
a,b
=
2
a
b
2
b
a
2
=
2
b
a
Equation of tangent is,
y
-
y
1
=
m
x
-
x
1
⇒
y
-
b
=
2
b
a
x
-
2
a
⇒
a
y
-
a
b
=
2
b
x
-
2
a
b
⇒
2
b
x
-
a
y
=
a
b
⇒
2
x
a
-
y
b
=
1
Equation of normal is,
y
-
y
1
=
-
1
m
x
-
x
1
⇒
y
-
b
=
-
a
2
b
x
-
2
a
⇒
2
b
y
-
2
b
2
=
-
a
x
+
2
a
2
⇒
a
x
+
2
b
y
=
2
b
2
+
2
a
2
⇒
a
x
2
+
b
y
=
a
2
+
b
2
Suggest Corrections
0
Similar questions
Q.
Find the equations of the tangent and the normal to the following curves at the indicated points.
(i) y = x
4
− bx
3
+ 13x
2
− 10x + 5 at (0, 5)
(ii) y = x
4
− 6x
3
+ 13x
2
− 10x + 5 at x = 1
(iii) y = x
2
at (0, 0)
(iv) y = 2x
2
− 3x − 1 at (1, −2)
(v)
y
2
=
x
3
4
-
x
at
2
,
-
2
(vi) y = x
2
+ 4x + 1 at x = 3
(vii)
x
2
a
2
+
y
2
b
2
=
1
at
a
cos
θ
,
b
sin
θ
(viii)
x
2
a
2
-
y
2
b
2
=
1
at
a
s
e
c
θ
,
b
tan
θ
(ix) y
2
= 4a x at (a/m
2
, 2a/m)
(x)
c
2
x
2
+
y
2
=
x
2
y
2
at
c
cos
θ
,
c
sin
θ
(ix) xy = c
2
at (ct, c/t)
(xii)
x
2
a
2
+
y
2
b
2
=
1
at
x
1
,
y
1
(xiii)
x
2
a
2
-
y
2
b
2
=
1
at
x
0
,
y
0
(xiv) x
2
/3
+ y
2
/3
= 2 at (1, 1)
(xv) x
2
= 4y at (2, 10
(xvi) y
2
= 4x at (1, 2)
(xvii) 4x
2
+ 9y
2
= 36 at (3 cos θ, 2 sin θ)
Q.
Find the angle of intersection of the following curves:
(i)
y
2
=
x
and
x
2
=
y
[NCERT EXEMPLAR]
(ii)
y
=
x
2
and
x
2
+
y
2
= 20
(iii) 2
y
2
=
x
3
and
y
2
= 32
x
(iv)
x
2
+
y
2
− 4
x
− 1 = 0 and
x
2
+
y
2
− 2
y
− 9 = 0
(v)
x
2
a
2
+
y
2
b
2
=
1
and
x
2
+
y
2
=
ab
(vi)
x
2
+ 4
y
2
= 8 and
x
2
− 2
y
2
= 2
(vii)
x
2
= 27
y
and
y
2
= 8
x
(viii)
x
2
+
y
2
= 2
x
and
y
2
=
x
(ix) y = 4
−
x
2
and y =
x
2
[NCERT EXEMPLAR]
Q.
Show that the curves
x
2
a
2
+
λ
1
+
y
2
b
2
+
λ
1
=
1
and
x
2
a
2
+
λ
2
+
y
2
b
2
+
λ
2
=
1
intersect at right angles.
Q.
Find the equations of the tangent and normal to the given curves at the indicated points:
(i)
y
=
x
4
−
6
x
3
+
13
x
2
−
10
x
+
5
at
(
0
,
5
)
.
(ii)
y
=
x
4
−
6
x
3
+
13
x
2
−
10
x
+
5
at
(
1
,
3
)
(iii)
y
=
x
3
at
(
1
,
1
)
(iv)
y
=
x
2
at
(
0
,
0
)
(v)
x
=
cos
t
,
y
=
sin
t
at
t
=
π
4
Q.
An ellipse has a focus at
(
a
e
,
0
)
and directrix along
x
=
a
e
. If
b
2
=
a
2
(
1
−
e
2
)
, then the equation of ellipse is
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Explore more
Length of Subnormal
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app