Let the four numbers be a−3d,a−d,a+d,a+3d
Now,
a−3d+a−d+a+d+a+3d=50
or, 4a=50 ⇒ a=252
Let d be a positive integer, then greatest number and least number is (a−3d)
According to question, a+3d=4(a−3d)
or, a+3d=4a−12d
or, a=5d
So, 252=5 d.⇒ d=52
∴ The number in A.P are:
(252−152),(252−52) , (252+52),(252+152)
=5,10,15,20, when least number 5=4 (greatest number)
=4×5=20