Find the general solution of given differential equation.
x2dydx=y(x+y)2
A
(y−x)2=cy2x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(y+x)2=cy2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(y+x)2=cx2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(x−y)2=cy2x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are B(y−x)2=cy2x D(x−y)2=cy2x x2dydx=y(x+y)2⇒dydx=(y/x)(1+y/x)2 Substitutey=vx⇒dydx=v+xdvdx ⇒v+xdvdx=v(1+v)2⇒xdvdx=v2−v2 ⇒dvv(v−1)=dx2x⇒dvv−1−dvv=dx2x Integrating we get, ⇒logv−1v=12logx+logk ⇒1−1v=k√x⇒(x−y)2=cy2x