Use the main Pythagorean trigonometric identity to get everything in terms of one trig function (cosine):
sin²θ + cos²θ = 1
sin²θ = 1 - cos²θ
- - - - - - - - - - - - - - - -
2·sin²(x) + 3·cos(x) = 0
2·[ 1 - cos²(x) ] + 3·cos(x) = 0
2 - 2·cos²(x) + 3·cos(x) = 0
2·cos²(x) - 3·cos(x) - 2 = 0
Factor the trinomial (or use the quadratic formula):
2·cos²(x) - 4·cos(x) + cos(x) - 2 = 0
2·cos(x) · [ cos(x) - 2 ] + 1 · [ cos(x) - 2 ] = 0
[ 2·cos(x) + 1 ] · [ cos(x) - 2 ] = 0
2·cos(x) + 1 = 0
or
cos(x) - 2 = 0
Which gives:
cos(x) = -½
or
cos(x) = 2
Since cosine cannot be greater than one, it cannot be two.
Cosine is -½ when:
x=120 or x=240
Therefore general solution can be written as
x=120
360n
where n is any integer
If you want that in radians:
x = 2π/3
2πn
where n is any integer