Consider the given function
∫cos2x−cos2αcosx−cosαdx
⇒∫2cos2x−1−2cos2α+1cosx−cosαdx∴cos2θ=2cos2θ−1
⇒∫2cos2x−2cos2αcosx−cosαdx
⇒2∫cos2x−cos2αcosx−cosαdx
⇒2∫(cosx−cosα)(cosx+cosα)(cosx−cosα)dx
⇒2∫(cosx+cosα)dx
⇒2∫cosxdx+2∫cosαdx
⇒2sinx+2xcosα+C
Hence, this is the answer.