Find the integrals of the functions.
∫cos2x(cosx+sinx)2dx.
Let I=∫cos2x(cosx+sinx)2dx=∫cos2x−sin2x(cosx+sinx)2dx
[∴cos2x=cos2x−sin2x]=∫(cosx−sinx)(cosx+sinx)(cosx+sinx)2dx=∫cosx−sinxcosx+sinxdx(∵(a2−b2)=(a−b)(a+b))
Putting cosx+sinx=t⇒−sinx+cosx=dtdx⇒dx=dtcosx−sinx
∴I=∫cosx−sinxt.dtcosx−sinx=∫1tdt=log|t|+C=log|cosx+sinx|+C