wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the integrals of the functions.
cos2x(cosx+sinx)2dx.

Open in App
Solution

Let I=cos2x(cosx+sinx)2dx=cos2xsin2x(cosx+sinx)2dx
[cos2x=cos2xsin2x]=(cosxsinx)(cosx+sinx)(cosx+sinx)2dx=cosxsinxcosx+sinxdx((a2b2)=(ab)(a+b))
Putting cosx+sinx=tsinx+cosx=dtdxdx=dtcosxsinx
I=cosxsinxt.dtcosxsinx=1tdt=log|t|+C=log|cosx+sinx|+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon