Find the inverse of the given matrix
⎡⎢⎣1000cos αsin α0sin α−cos α⎤⎥⎦
Let A=⎡⎢⎣1000cos αsin α0sin α−cos α⎤⎥⎦
We have, |A|=⎡⎢⎣1000cos αsin α0sin α−cos α⎤⎥⎦=1(−cos2α−sin2α)=−(cos2α+sin2α)=−1 [∵cos2θ+sin2θ=1]
Cofactos of A are
A11=−cos2α−sin2α=−1,A12=−(0−0)=0,A13=0−0=0A21=−(0−0)=0,A22=−cosα−0=−cosαA23=−(sinα−0)=−sinαA31=0−0=0,A32=−(sinα−0)=−sinα,A33=cosα−0=cosα
∴ adj(A)=⎡⎢⎣−1000−cos α−sin α0−sin αcos α⎤⎥⎦T=⎡⎢⎣−1000−cos α−sin α0−sin αcos α⎤⎥⎦
Now, A−1=1|A|(adj A)
=1−1⎡⎢⎣−1000cos α−sin α0−sin αcos α⎤⎥⎦=⎡⎢⎣1000cos αsin α0sin α−cos α⎤⎥⎦