⎡⎢⎣123115247⎤⎥⎦The co-factor matrix
C11=(−1)1+1M11=∣∣∣1547∣∣∣=7−20=−13
C12=(−1)1+2M12=−∣∣∣1527∣∣∣=−(7−10)=3
C13=(−1)1+3M13=∣∣∣1124∣∣∣=4−2=2
C21=(−1)2+1M21=−∣∣∣2347∣∣∣=−(14−12)=−2
C22=(−1)2+2M22=∣∣∣1327∣∣∣=7−6=1
C23=(−1)2+3M23=−∣∣∣1224∣∣∣=−(4−4)=0
C31=(−1)3+1M31=∣∣∣2315∣∣∣=10−3=7
C32=(−1)3+2M32=−∣∣∣1315∣∣∣=−(5−3)=−2
C33=(−1)3+3M33=∣∣∣1211∣∣∣=1−2=−1
Since the transpose of the co-factor matrix of A is adjA
⇒ Adj(A)
=∣∣
∣∣−1332−2107−2−1∣∣
∣∣T
=∣∣
∣∣−13−2731−220−1∣∣
∣∣
Since detA from the above matrix A
=1(7−20)−2(7−10)+3(4−2)=−13+6+6=−1≠0
Hence inverse of A−1 exists.
A−1=adjA|A|
=−∣∣
∣∣−13−2731−220−1∣∣
∣∣
=∣∣
∣∣132−7−3−12−201∣∣
∣∣