Find the inverse z- transform of
X(z)=z(z−1)(z−2)2|z|>2
Using partial fraction expansion,
X(z)z=az−1+bz−2+c(z−2)2
where, a=1(z−2)2|z=1=1
c=1(z−1)|z=2=1
b=ddz(1(z−1))|z=2
=−1(z−1)2=−1
∴X(z)=zz−1−zz−2+z(z−2)2,|z|>2
Since the ROC is |z| >2, hence the sequence will be a right sided sequence
∴ we get x[n]=(1−2n+n2n−1)u[n]