wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the least value of the function y=7+3x+2.33xxln279.

Open in App
Solution

y=7+3x+2×33xxln279
y=0+3xln3+2ln3(33x)(1)3ln30
=3xln32ln3(33)3x3ln3=0
$= (3^{x})^{2} ln 3 - 2\times 27 \times ln 3 - {3^{x}}3ln 3 = 0$
(3x)22×273×3x=0
(3x)23×3x54=0
(3x)29×3x+6×3x54=0 [Solving Quadratic Equation)
3x[3x9]+6[3x9]=0
(3x+6)(3x9)=0
3x=6 (Not possible) and,
3x9=0x=2
y′′=(ln3)23x+2(ln3)233x0
Put x=2
=(ln3)29+6(ln3)2
=15(ln3)2>0
Therefore, x=2 is the point of minima.
at x=2,y=136ln3.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon